1 | J. Xu, J. Zhang, T. P. Pollard, Q. Li, T. Sha, S. Hou, H. Wan, F. Chen, H. He, E. Hu, K. Xu, X.-Q. Yang, O. Borodin*, C. Wang*. Electrolyte Design for Li-ion Batteries under Extreme Operating Conditions. | Nature, 2023, 614, 694. | ESI highly cited paper | https://doi.org/10.1038/s41586-022-05627-8 |
2 | J. Xu, X. Ji, J. Zhang, C. Yang, P. F. Wang, S. Liu, K. Ludwig, F. Chen, P. Kofinas, C. Wang*. Aqueous Electrolyte Design for Super-Stable 2.5 V LiMn2O4||Li4Ti5O12 Pouch Cells. | Nature Energy, 2022, 7, 186. | ESI highly cited paper | https://doi.org/10.1038/s41560-021-00977-5 |
3 | H. Wan, J. Xu*, C. Wang*. Designing electrolytes and interphases for high-energy lithium batteries. | Nature Reviews Chemistry, 2024, 8, 30-44. | ESI highly cited paper | https://doi.org/10.1038/s41570-023-00557-z |
4 | C. Hu, Y. Zhang, R. Ren, J. Xu*, L. Liu, Q. Kong, Z. Hu, S. Zheng, L. Zhuang, J. Huang*, Y. Tan*, X. Huang*. A selenium-mediated layer-by-layer synthetic strategy for multilayered multicomponent nanocrystals | Nature Synthesis, 2024, 3, 1299–1309 | | https://doi.org/10.1038/s44160-024-00598-2 |
5 | J. Xu*, V. Koverga, A. Phan, A. Li, N. Zhang, M. Baek, C. Jayawardana, B. L. Lucht, A. T. Ngo*, C. Wang*. Revealing the Anion–Solvent Interaction for Ultralow Temperature Lithium Metal Batteries. | Advanced Materials, 2024, 36, 2306462. | ESI highly cited paper | https://doi.org/10.1002/adma.202306462 |
6 | N. Zhang, A. Li, W. Zhang, Z. Wang, Y. Liu, X. Zhang, Y. Ren, H. Wan, J. Xu*, C. Wang*. 4.6V Moisture-Tolerant Electrolytes for Lithium-Ion Batteries. | Advanced Materials, 2024, 2408039. | | https://doi.org/10.1002/adma.202408039 |
7 | J. Xu, T. P. Pollard, C. Yang, N. K. Dandu, T. Sha, J. Zhou, J. Wang, X. He, X. Zhang, A.-M. Li, E. Hu, X.-Q. Yang, A. Ngo, O. Borodin, C. Wang*. Lithium Halides Cathodes for Li Metal Batteries. | Joule, 2023, 7, 83. | | https://doi.org/10.1016/j.joule.2022.11.002 |
8 | J. Zhang, P- F. Wang, P. Bai, H. Wan, S. Liu, S. Hou, X. Pu, J. Xia, W. Zhang, Z. Wang, B, Nan, X. Zhang, J. Xu*, C. Wang*. Interfacial Design for 4.6 V High‐Voltage Single‐Crystalline LiCoO2 Cathode. | Advanced Materials, 2022, 34, 2108353. | ESI highly cited paper | https://doi.org/10.1002/adma.202108353 |
9 | J. Xu*. Critical Review on Cathode Electrolyte Interphase towards High-Voltage Cathodes for Li-Ion Batteries. | Nano-Micro Letters, 2022, 14, 166. | Invited | https://doi.org/10.1007/s40820-022-00917-2 |
10 | S. Hou, X. Ji, K. Gaskell, P.-f. Wang, L. Wang, J. Xu, R. Sun, O. Borodin*, C. Wang*. Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics. | Science, 2021, 374, 172. | ESI highly cited paper | https://doi.org/10.1126/science.abg3954 |
11 | S. Sun, K. Wang, Z. Hong, M. Zhi, K. Zhang*, J. Xu*. Electrolyte Design for Low-Temperature Li-Metal Batteries: Challenges and Prospects. | Nano-Micro Letters, 2024, 16, 35. | | https://doi.org/10.1007/s40820-023-01245-9 |
12 | J. Gong, H. Zhang, X. Liang, P. Li, Y. Liu, X. Li, C. Zhi, Z. Zhu*, X. C. Zeng*, N. Li*, J. Xu*. Cation Engineering Perovskite Cathodes for Fast and Stable Anion Redox Chemistry in Zinc-Iodine Batteries | Advanced Functional Materials, 2024, 34, 2411137 | | https://doi.org/10.1002/adfm.202411137 |
13 | X. Li, Y. Shen, X. Wang, S. Ni, L. Yue, S. A. Khan, J. Zhao, J. Xu*. Emerging halides as a new class of high-performance cathodes. | Energy Storage Materials, 2024, 71, 103660. | | https://doi.org/10.1016/j.ensm.2024.103660 |
14 | R. Lin, Y. Jin*, Y. Li, M. Fu, Y. Gong, L. Lei, Y. Zhang, J. Xu*, Y Xiong*. Decoupling Interfacial Stability and Ion Transport in Solid Polymer Electrolyte by Tailored Ligand Chemistry for Lithium Metal Battery | Advanced Functional Materials, 2024, 2421880 | | https://doi.org/10.1002/adfm.202421880 |
15 | L. Yue, M.Yu, X. Li, Y. Shen, Y.Wu, C. Fa, N. Li, J. Xu*. Wide Temperature Electrolytes for Lithium Batteries: Solvation Chemistry and Interfacial Reactions. | Small Methods, 2024, 8, 2400183. | | https://doi.org/10.1002/smtd.202400183 |
16 | B. Cui, J. Xu*. Enabling Rational Electrolyte Design for Lithium Batteries through Precise Descriptors: Progress and Future Perspectives | Journal of Materials Chemistry A, 2025, 13, 8223-8245 | | https://doi.org/10.1039/D4TA07449A |
17 | J. Zheng*, H. Wang, C. Hu, H. Chen, W. Zhang, X. Chu, L. Nie, R. Chen, J. Long, M. Lei, J. Xu*, Z. Lin, Q. Lai*. Electrolyte matching design for carboxylic Acid-Based organic K-Storage anode. | Chemical Engineering Journal, 2024, 495, 153833. | | https://doi.org/10.1016/j.cej.2024.153833 |
18 | L. Zhou*, Z. Zhang, S. Lv, M. Zhang, P. Jiao, W. Zhang, J. Xu*, K. Zhang*. SnO2 coating to stabilize Mn-based layered oxide cathode materials for sodium-ion batteries. | Materials Today Energy, 2023, 38, 101450. | | https://doi.org/10.1016/j.mtener.2023.101450 |
19 | J. Xu*. High-entropy electrolytes in boosting battery performance. | Materials Futures, 2023, 2, 047501. | | https://doi.org/10.1088/2752-5724/ace8ab |
20 | J. Xu, C. Wang*. Perspective—Electrolyte Design for Aqueous Batteries: From Ultra-High Concentration to Low Concentration? | Journal of The Electrochemical Society, 2022, 169, 030530. | Invited | https://doi.org/10.1149/1945-7111/ac5ba9 |
21 | W. Dong, R. Li, J. Xu (equal contribution), Y. Tang, F. Huang*. Long-life and high volumetric capacity Bi2Sn2O7 anode with interpenetrating Bi–O and Sn–O networks. | Cell Reports Physical Science, 2022, 3, 101109. | | https://doi.org/10.1016/j.xcrp.2022.101109 |
22 | J. Xu, D. Wang, S. Kong, R. Li, Z. Hong*, F. Huang*. Pyrochlore phase Ce2Sn2O7 via an atom-confining strategy for reversible lithium storage. | Journal of Materials Chemistry A, 2020, 8, 5744. | | https://doi.org/10.1039/C9TA13602A |
23 | J. Xu, J. Huang, S. Zhang, Z. Hong, F. Huang*. Understanding the surface reduction of nano rutile and anatase: Selective breaking of Ti-O bonds. | Materials Research Bulletin, 2020, 121, 110617. | | https://doi.org/10.1016/j.materresbull.2019.110617 |
24 | K. Liu, J. Xu (equal contribution), Y. Wang, M. Qian, W. Zhao, Y. Zeng, F. Huang*. Boron and Nitrogen Co‐Doped Trimodal‐Porous Wood‐Derived Carbon for Boosting Capacitive Performance. | Energy Technology, 2020, 8, 1900950. | | https://doi.org/10.1002/ente.201900950 |
25 | J. Xu, J. He, W. Ding, Z. Hong, F. Huang*. Boosting the Stable Na Storage Performance in 1D Oxysulfide. | Advanced Energy Materials, 2019, 9, 1900170. | | https://doi.org/10.1002/aenm.201900170 |
26 | J. Xu, Z. Li, P. Sun, K. Liu, Z. Liu, Z. Hong*, F. Huang*. Effective incorporation of nitrogen and boron in worm-like carbon foam for confining polysulfides. | Carbon, 2019, 155, 379. | | https://doi.org/10.1016/j.carbon.2019.08.088 |
27 | J. Xu, D. Wang, H. Yao, K. Bu, J. Pan, J. He, F. Xu, Z. Hong, X. Chen, F. Huang*. Nano titanium monoxide crystals and unusual superconductivity at 11 K. | Advanced Materials, 2018, 30, 1706240. | | https://doi.org/10.1002/adma.201706240 |
28 | J. Xu, F. Xu, M. Qian, Z. Li, P. Sun, Z. Hong, F. Huang*. Copper nanodot-embedded graphene urchins of nearly full-spectrum solar absorption and extraordinary solar desalination. | Nano Energy, 2018, 53, 425. | | https://doi.org/10.1016/j.nanoen.2018.08.067 |
29 | J. Xu, W. Ding, G. Yin, Z. Tian, S. Zhang, Z. Hong*, F. Huang*. Capacitive lithium storage of lithiated mesoporous titania. | Materials today energy, 2018, 9, 240. | | https://doi.org/10.1016/j.mtener.2018.05.016 |
30 | X. Yao, J. Xu (equal contribution), Z. Hong, G. Li, X. Wang, F. Lu, W. Wang, H. Liu, C. Liang, Z. Lin*. W. Wang*, Metal/graphene composites with strong metal–S bondings for sulfur immobilization in Li–S batteries | The Journal of Physical Chemistry C, 2018, 122, 3263. | | https://doi.org/10.1021/acs.jpcc.7b12063 |
31 | J. Xu, F. Xu, M. Qian, F. Xu, Z. Hong, F. Huang*. Conductive carbon nitride for excellent energy storage | Advanced Materials, 2017, 29, 1701674. | | https://doi.org/10.1002/adma.201701674 |
32 | W. Dong, J. Xu (equal contribution), C. Wang, Y. Lu, X. Liu, X. Wang, X. Yuan, Z. Wang, T. Lin, M. Sui, F. Huang*. A robust and conductive black tin oxide nanostructure makes efficient lithium‐ion batteries possible | Advanced Materials, 2017, 29, 1700136. | | https://doi.org/10.1002/adma.201700136 |
33 | J. Xu, W. Ding, W. Zhao, W. Zhao, Z. Hong*, F. Huang*. In situ growth enabling ideal graphene encapsulation upon mesocrystalline MTiO3 (M= Ni, Co, Fe) nanorods for stable lithium storage | ACS Energy Letters, 2017, 2, 659. | | https://doi.org/10.1021/acsenergylett.7b00018 |
34 | J. Xu, Z. Tian, G. Yin, T. Lin, F. Huang*. Controllable reduced black titania with enhanced photoelectrochemical water splitting performance | Dalton Transactions, 2017, 46, 1047. | | https://doi.org/10.1039/C6DT04060H |
35 | J. Xu, W. Dong, C. Song, Y. Tang, W. Zhao, Z. Hong*, F. Huang*. Black rutile (Sn, Ti)O2 initializing electrochemically reversible Sn nanodots embedded in amorphous lithiated titania matrix for efficient lithium storage | Journal of Materials Chemistry A, 2016, 4,15698. | | https://doi.org/10.1039/C6TA05645H |
36 | G. Zhu, J. Xu (equal contribution), W. Zhao, F. Huang*. Constructing black titania with unique nanocage structure for solar desalination. | ACS applied materials & interfaces, 2016, 8, 31716. | | https://doi.org/10.1021/acsami.6b11466 |
37 | J. Xu, G. Zhu, T. Lin, Z. Hong*, J. Wang*, F. Huang*. Molten salt assisted synthesis of black titania hexagonal nanosheets with tuneable phase composition and morphology. | RSC advances, 2015, 5, 85928. | | https://doi.org/10.1039/C5RA17558E |
38 | S. A. Khan, X. Li, S Ni, I. Hussain, R. Liu, A. K. Thakur, J. Xu, Y. Shen,
A. K. An, J. Zhao*. Experimental investigation of gallium-based composite PCM for battery thermal management applications | Renewable and Sustainable Energy Reviews, 2025, 213, 115466 | | https://authors.elsevier.com/c/1kdKp_V0xP1loh |
39 | A. L. Phan, B. Nan, P. ML. Le, Q. Miao, Z. Wu, K. Le, F. Chen, M. Engelhard, T. D. Nguyen, K. S. Han, J. Heo, W. Zhang, M. Baek, J. Xu, X. Zhang, P. Liu, L. Ma*, C. Wang*. Lightweight electrolyte design for Li/sulfurized polyacrylonitrile (SPAN) batteries | Advanced Materials, 2024, 36, 2406594. | | https://doi.org/10.1002/adma.202406594 |
40 | Y. Zhang, S. Li, J. Shi, J. Lai, Z. Zhuang, J. Liu, W. Yang, L. Ma, Y.-P. Cai, J. Xu, Q. Zheng*. Revealing the key role of non-solvating diluents for fast-charging and low temperature Li-ion batteries. | Journal of Energy Chemistry, 2024, 94, 171-180. | | https://doi.org/10.1016/j.jechem.2024.02.059 |
41 | Y. Wang, S. Zhou, N. Li, J.Han, S. Zhang, Z. Zhuang, Z.Sun, X. Wang, X. Wu, Z. Chen, J. Pan, Y. Shen, J. Xu, Y. Zhu, D.-L. Peng, Z. Guo, Q. Zhang*. Long-Durable Potassium Ion Batteries Enabled by Medium-Entropy Lattice Engineering on Prussian Blue Analogues Cathodes. | Advanced Energy Materials, 2024, 2405007. | | https://doi.org/10.1002/aenm.202405007 |
42 | S. Zhou, Z. Sun, Z. Zhuang, S. Wen, H. Chen, Q. Yin, J. Pan, X. Chen, J. Xu, Q. Zhang*. Facile and Scalable Synthesis of Bismuth Oxyhalide Nanosheets Anode for Fast and Durable Sodium-ion Storage | SCIENCE CHINA Materials, 2024, online | | https://doi.org/10.1007/s40843-024-3175-3 |
43 | Y. Zhou, Y. Ding, Y. Chen, Y. Shen, Z. Wang, X. Li, J. Xu, X. Huang*. Thermal degradation of lithium-ion battery cathodes: A machine learning prediction of stability and safety. | Energy Materials, 2024, online. | | https://doi.org/10.20517/energymater.2024.200 |
44 | C. Yang, J. Xia, C. Cui, T. P. Pollard, J. Vatamanu, A. Faraone, J. A. Dura, M. Tyagi, A. Kattan, E. Thimsen, J. Xu, W. Song, E. Hu, X. Ji, S. Hou, X. Zhang, M. S. Ding, S. Hwang, D. Su, Y. Ren, X-Q. Yang, H. Wang, O. Borodin*, C. Wang*. All-temperature zinc batteries with high-entropy aqueous electrolyte. | Nature Sustainability, 2023, 6, 325. | ESI highly cited paper | https://doi.org/10.1038/s41893-022-01028-x |
45 | H. Wan, B. Zhang, S. Liu, Z. Wang, J. Xu, C. Wang*. Interface Design for High‐Performance All‐Solid‐State Lithium Batteries. | Advanced Energy Materials, 2023, 14, 2303046. | | https://doi.org/10.1002/aenm.202303046 |
46 | C. Hu, J. Xu, X. Huang*. Recent Advances of Ruthenium-Based Electrocatalysts for Hydrogen Energy. | Trends in Chemistry, 2023, 5, 225-239. | | https://doi.org/10.1016/j.trechm.2023.01.002 |
47 | S. Liu, X. Ji, N. Piao, J. Chen, N. Eidson, J. Xu, P. Wang, L. Chen, J. Zhang, T. Deng, C. Wang*. An Inorganic‐Rich Solid Electrolyte Interphase for Advanced Lithium‐Metal Batteries in Carbonate Electrolytes. | Angewandte Chemie International Edition, 2021, 60, 3661. | ESI highly cited paper | https://doi.org/10.1002/anie.202012005 |
48 | L. Cao, D. Li, E. Hu, J. Xu, T. Deng, L. Ma, Y. Wang, X.-Q. Yang, C. Wang*. Solvation structure design for aqueous Zn metal batteries. | Journal of the American Chemical Society, 2020, 142, 21404. | ESI highly cited paper | https://doi.org/10.1021/jacs.0c09794 |
49 | Q. Li, C. Yang, J. Zhang, X. Ji, J. Xu, X. He, L. Chen, S. Hou, J. Uddin, D. Addison, C. Wang*. Controlling Intermolecular Interaction and Interphase Chemistry Enabled Sustainable Water‐tolerance LiMn2O4|| Li4Ti5O12 Batteries. | Angewandte Chemie International Edition, 2022, 61, e202214126. | | https://doi.org/10.1002/anie.202214126 |
50 | B. Nan, L. Chen, N. D. Rodrigo, O. Borodin, N. Piao, J. Xia, T. Pollard, S. Hou, J. Zhang, X. Ji, J. Xu, C. Wang*. Enhancing Li+ Transport in NMC811|| Graphite Lithium‐Ion Batteries at Low temperatures by Using Low-Polarity-Solvent Electrolytes. | Angewandte Chemie International Edition, 2022, 61, e202205967. | ESI highly cited paper | https://doi.org/10.1002/anie.202205967 |
51 | H. Qi, J. Xu, P. Sun, X. Qi, Y. Xiao, W. Zhao, R. Joshi, F. Huang*. Tailoring Conductive Three‐Dimensional Porous Hard Carbon for Supercapacitors. | Energy Technology, 2022, 10, 2101103. | | https://doi.org/10.1002/ente.202101103 |
52 | L. Fan, S. Zhang, W. Dong, J. Xu, X. Che, R. Li, H. Bi, F. Huang*. Two-dimensional TiNCl for capacitive-like lithium-ion storage. | Science China Materials, 2022, 65, 2942. | | https://doi.org/10.1007/s40843-022-2072-8 |
53 | H. Wan, S. Liu, T. Deng, J. Xu, J. Zhang, X. He, X. Ji, X. Yao, C. Wang*. Bifunctional Interphase-Enabled Li10GeP2S12 Electrolytes for Lithium–Sulfur Battery. | ACS Energy Letters, 2021, 6, 862. | | https://doi.org/10.1021/acsenergylett.0c02617 |
54 | X. He, X. Ji, B. Zhang, N. D. Rodrigo, S. Hou, K. Gaskell, T. Deng, H. Wan, S. Liu, J. Xu, C. Wang*. Tuning Interface Lithiophobicity for Lithium Metal Solid-State Batteries. | ACS Energy Letters, 2021, 7, 131. | | https://doi.org/10.1021/acsenergylett.1c02122 |
55 | R. Li, J. Xu, Z. Lv, W. Dong, F. Huang*. Achieving highly stable Sn-based anode by a stiff encapsulation heterostructure. | Science China Materials, 2021, 65, 695. | | https://doi.org/10.1007/s40843-021-1783-0 |
56 | T. Deng, L. Cao, X. He, A.-M. Li, D. Li, J. Xu, S. Liu, P. Bai, T. Jin, L. Ma, C. Wang*. In situ formation of polymer-inorganic solid-electrolyte interphase for stable polymeric solid-state lithium-metal batteries. | Chem, 2021, 7, 3052. | | https://doi.org/10.1016/j.chempr.2021.06.019 |
57 | C. Yang, X. Wang, W. Dong, I.-W. Chen, Z. Wang, J. Xu, T. Lin, H. Gu, F. Huang*. Nitrogen-doped black titania for high performance supercapacitors. | Science China Materials, 2020, 63, 1227. | | https://doi.org/10.1007/s40843-020-1303-4 |
58 | P.-F. Wang, T. Jin, J. Zhang, Q.-C. Wang, X. Ji, C. Cui, N. Piao, S. Liu, J. Xu, X.-Q. Yang, C. Wang*. Elucidation of the Jahn-Teller effect in a pair of sodium isomer. | Nano Energy, 2020, 77, 105167. | | https://doi.org/10.1016/j.nanoen.2020.105167 |
59 | P. Sun, J. Huang, F. Xu, J. Xu, T. Lin, W. Zhao, W. Dong, F. Huang*. Boron-induced nitrogen fixation in 3D carbon materials for supercapacitors. | ACS Applied Materials & Interfaces, 2020, 12, 28075. | | https://doi.org/10.1021/acsami.0c02535 |
60 | M. Qian, Z. Li, L. Fan, H. Wang, J. Xu, W. Zhao, F. Huang*. Ultra-Light graphene tile-based phase-change material for efficient thermal and solar energy harvest. | ACS Applied Energy Materials, 2020, 3, 5517. | | https://doi.org/10.1021/acsaem.0c00490 |
61 | X. Qi, T. Lin, S. Zhang, J. Xu, H. Zhang, F. Xu, F. Huang*. Nitrogen doped hierarchical porous hard carbon derived from a facial Ti-peroxy-initiating in-situ polymerization and its application in electrochemical capacitors. | Microporous and Mesoporous Materials, 2020, 294, 109884. | | https://doi.org/10.1016/j.micromeso.2019.109884 |
62 | Z. Li, J. Xu, D. Sun, T. Lin, F. Huang*. Nanoporous carbon foam for water and air purification. | ACS Applied Nano Materials, 2020, 3, 1564. | | https://doi.org/10.1021/acsanm.9b02347 |
63 | Z. Li, W. Ma, J. Xu, M. Qian, H. Bi, W. Zhao, Z. Lv, F. Huang*. Oxygen-enriched tubular carbon for efficient solar steam generation. | Carbon, 2020, 170, 256. | | https://doi.org/10.1016/j.carbon.2020.08.039 |
64 | S. Kong, J. Xu, G. Lin, S. Zhang, W. Dong, J. Wang, F. Huang*. A rationally designed 3D interconnected porous tin dioxide cube with reserved space for volume expansion as an advanced anode of lithium-ion batteries. | Chemical Communications, 2020, 56, 10289. | | https://doi.org/10.1039/D0CC03948A |
65 | J. Huang, X. Che, J. Xu, W. Zhao, F. Xu, F. Huang*. A reverse slipping strategy for bulk-reduced TiO2−x preparation from Magnéli phase Ti4O7. | Inorganic Chemistry Frontiers, 2020, 7, 212. | | https://doi.org/10.1039/C9QI01042D |
66 | A. Riaz, C. Zhou, J. Xu, Z. Hong*. Photocatalytic Performance of MWCNTs/TiO2 Nanocomposites: Conventional vs. Microwave-Assisted Synthesis. | Integrated Ferroelectrics, 2020, 211, 175. | | https://doi.org/10.1080/10584587.2017.1336916 |
67 | X. Wang, J. Xu, M. Zhi, Z. Hong, F. Huang*. Synthesis of Co2P nanoparticles decorated nitrogen, phosphorus Co-doped Carbon-CeO2 composites for highly efficient oxygen reduction. | Journal of Alloys and Compounds, 2019, 801, 192. | | https://doi.org/10.1016/j.jallcom.2019.06.087 |
68 | X. Wang, J. Xu, Z. Wu, M. Zhi, Z. Hong, F. Huang*. Complexing‐Coprecipitation Method to Synthesize Catalysts of Cobalt, Nitrogen‐Doped Carbon, and CeO2 Nanosheets for Highly Efficient Oxygen Reduction. | Chemnanomat, 2019, 5, 831. | | https://doi.org/10.1002/cnma.201900139 |
69 | M. Qian, Z. Wang, Z. Li, J. Xu, P. Sun, J. Lin, T. Lin, F. Huang*. Sol-gel assisted chemical activation for nitrogen doped porous carbon. | Microporous and Mesoporous Materials, 2019, 286, 18. | | https://doi.org/10.1016/j.micromeso.2019.05.038 |
70 | J. Lin, J. Xu, W. Zhao, W. Dong, R. Li, Z. Zhang, F. Huang*. In Situ Synthesis of MoC1–x Nanodot@ Carbon Hybrids for Capacitive Lithium-Ion Storage. | ACS applied materials & interfaces, 2019, 11, 19977. | | https://doi.org/10.1021/acsami.9b03230 |
71 | J. Huang, J. Xu, X. Che, C. Huang, J. Huang*. Dismutation of Titanium Sub‐oxide into TiO and TiO2 with Structural Hierarchy Assisted by Ammonium Halides. | Chemistry–A European Journal, 2019, 25, 10642. | | https://doi.org/10.1002/chem.201901057 |
72 | C. Huang, X. Wang, D. Wang, W. Zhao, K. Bu, J. Xu, X. Huang, Q. Bi, J. Huang, F. Huang*. Atomic Pillar Effect in PdxNbS2 To Boost Basal Plane Activity for Stable Hydrogen Evolution. | Chemistry of Materials, 2019, 31, 4726. | | https://doi.org/10.1021/acs.chemmater.9b00821 |
73 | G. Yin, X. Huang, T. Chen, W. Zhao, Q. Bi, J. Xu, Y. Han, F. Huang*. Hydrogenated blue titania for efficient solar to chemical conversions: preparation, characterization, and reaction mechanism of CO2 reduction. | ACS Catalysis, 2018, 8, 1009. | | https://doi.org/10.1021/acscatal.7b03473 |
74 | Q. Wang, J. Xu, R. Li, Z. Lin, B. Liu, Z. Li*. A strategy to deposit nano metals in multi-layer graphene for scalable synthesis of high performance anode materials in lithium ion battery. | Journal of Alloys and Compounds, 2018, 731, 739. | | https://doi.org/10.1016/j.jallcom.2017.09.206 |
75 | P. Wang, J. Xu, F. Xu, W. Zhao, P. Sun, Z. Zhang, M. Qian, F. Huang*. Constructing hierarchical porous carbon via tin punching for efficient electrochemical energy storage. | Carbon, 2018, 134, 391. | | https://doi.org/10.1016/j.carbon.2018.04.012 |
76 | H. Liu, Y. Tang, W. Zhao, W. Ding, J. Xu, C. Liang, Z. Zhang, T. Lin, F. Huang*. Facile Synthesis of Nitrogen and Halogen Dual‐Doped Porous Graphene as an Advanced Performance Anode for Lithium‐Ion Batteries. | Advanced Materials Interfaces, 2018, 5, 1701261. | | https://doi.org/10.1002/admi.201701261 |
77 | J. Lin, W. Zhao, M. Qian, K. Liu, J. Xu, F. Huang*. Self-templated synthesis of heavily nitrogen-doped hollow carbon spheres. | Chemical Communications, 2018, 54, 4565. | | https://doi.org/10.1039/C8CC00415C |
78 | Y. X. Hao, M. Qian, J. Xu, H. Bi, F. Huang*. Porous Cotton-derived Carbon: Synthesis, Microstructure and Supercapacitive Performance. | Journal of Inorganic Materials, 2018, 33, 93-99. | | https://doi.org/10.15541/jim20170164 |
79 | G. Yin, Q. Bi, W. Zhao, J. Xu, T. Lin, F. Huang*. Efficient conversion of CO2 to methane photocatalyzed by conductive black titania. | ChemCatChem, 2017, 9, 4389. | | https://doi.org/10.1002/cctc.201701130 |
80 | Z. Tian, H. Cui, J. Xu, G. Zhu, F. Shao, J. He, F. Huang*. Efficient Charge Separation of In‐Situ Nb‐Doped TiO2 Nanowires for Photoelectrochemical Water–splitting. | ChemistrySelect, 2017, 2, 2822. | | https://doi.org/10.1002/slct.201700319 |
81 | Y. Hao, F. Xu, M. Qian, J. Xu, W. Zhao, F. Huang*. Low-cost and massive preparation of nitrogen-doped porous carbon for supercapacitor application. | RSC Advances, 2017, 7, 10901. | | https://doi.org/10.1039/C6RA28354C |
82 | C. Guo, H. Li, W. Zhao, J. Pan, T. Lin, J. Xu, M. Chen, F. Huang*. High-quality single-layer nanosheets of MS2 (M= Mo, Nb, Ta, Ti) directly exfoliated from AMS2 (A= Li, Na, K) crystals. | Journal of Materials Chemistry C, 2017, 5, 5977. | | https://doi.org/10.1039/C7TC00838D |
83 | K. Bu, J. He, X. Lai, C. Song, D. Wang, J. Xu, S. Wang, F. Huang*. Effects of Iron Doping on the Physical Properties of Quaternary Ferromagnetic Sulfide: Ba2Fe0. 6V1. 4S6. | Inorganic chemistry, 2017, 56, 8302. | | https://doi.org/10.1021/acs.inorgchem.7b00960 |
84 | G. Zhu, Y. Shan, T. Lin, W. Zhao, J. Xu, Z. Tian, H. Zhang, C. Zheng, F. Huang*. Hydrogenated blue titania with high solar absorption and greatly improved photocatalysis. | Nanoscale, 2016, 8, 4705. | | https://doi.org/10.1039/C5NR07953E |
85 | Z. Tian, H. Cui, G. Zhu, W. Zhao, J. Xu, F. Shao, J. He, F. Huang*. Hydrogen plasma reduced black TiO2B nanowires for enhanced photoelectrochemical water-splitting. | Journal of Power Sources, 2016, 325: 697-705. | | https://doi.org/10.1016/j.jpowsour.2016.06.074 |
86 | G. Zhu, H. Yin, C. Yang, H. Cui, Z. Wang, J. Xu, T. Lin, F. Huang*. Black titania for superior photocatalytic hydrogen production and photoelectrochemical water splitting. | ChemCatChem, 2015, 7, 2614. | | https://doi.org/10.1002/cctc.201500488 |