Publications

Publications

No.ArticleJournalRemarkDOI
1J. Xu, J. Zhang, T. P. Pollard, Q. Li, T. Sha, S. Hou, H. Wan, F. Chen, H. He, E. Hu, K. Xu, X.-Q. Yang, O. Borodin*, C. Wang*. Electrolyte Design for Li-ion Batteries under Extreme Operating Conditions.Nature, 2023, 614, 694.ESI highly cited paperhttps://doi.org/10.1038/s41586-022-05627-8
2J. Xu, X. Ji, J. Zhang, C. Yang, P. F. Wang, S. Liu, K. Ludwig, F. Chen, P. Kofinas, C. Wang*. Aqueous Electrolyte Design for Super-Stable 2.5 V LiMn2O4||Li4Ti5O12 Pouch Cells.Nature Energy, 2022, 7, 186.ESI highly cited paperhttps://doi.org/10.1038/s41560-021-00977-5
3H. Wan, J. Xu*, C. Wang*. Designing electrolytes and interphases for high-energy lithium batteries.Nature Reviews Chemistry, 2024, 8, 30-44.ESI highly cited paperhttps://doi.org/10.1038/s41570-023-00557-z
4C. Hu, Y. Zhang, R. Ren, J. Xu*, L. Liu, Q. Kong, Z. Hu, S. Zheng, L. Zhuang, J. Huang*, Y. Tan*, X. Huang*. A selenium-mediated layer-by-layer synthetic strategy for multilayered multicomponent nanocrystalsNature Synthesis, 2024, 3, 1299–1309https://doi.org/10.1038/s44160-024-00598-2
5J. Xu*, V. Koverga, A. Phan, A. Li, N. Zhang, M. Baek, C. Jayawardana, B. L. Lucht, A. T. Ngo*, C. Wang*. Revealing the Anion–Solvent Interaction for Ultralow Temperature Lithium Metal Batteries.Advanced Materials, 2024, 36, 2306462.ESI highly cited paperhttps://doi.org/10.1002/adma.202306462
6N. Zhang, A. Li, W. Zhang, Z. Wang, Y. Liu, X. Zhang, Y. Ren, H. Wan, J. Xu*, C. Wang*. 4.6V Moisture-Tolerant Electrolytes for Lithium-Ion Batteries.Advanced Materials, 2024, 2408039.https://doi.org/10.1002/adma.202408039
7J. Xu, T. P. Pollard, C. Yang, N. K. Dandu, T. Sha, J. Zhou, J. Wang, X. He, X. Zhang, A.-M. Li, E. Hu, X.-Q. Yang, A. Ngo, O. Borodin, C. Wang*. Lithium Halides Cathodes for Li Metal Batteries.Joule, 2023, 7, 83.https://doi.org/10.1016/j.joule.2022.11.002
8J. Zhang, P- F. Wang, P. Bai, H. Wan, S. Liu, S. Hou, X. Pu, J. Xia, W. Zhang, Z. Wang, B, Nan, X. Zhang, J. Xu*, C. Wang*. Interfacial Design for 4.6 V High‐Voltage Single‐Crystalline LiCoO2 Cathode.Advanced Materials, 2022, 34, 2108353.ESI highly cited paperhttps://doi.org/10.1002/adma.202108353
9J. Xu*. Critical Review on Cathode Electrolyte Interphase towards High-Voltage Cathodes for Li-Ion Batteries.Nano-Micro Letters, 2022, 14, 166.Invitedhttps://doi.org/10.1007/s40820-022-00917-2
10S. Hou, X. Ji, K. Gaskell, P.-f. Wang, L. Wang, J. Xu, R. Sun, O. Borodin*, C. Wang*. Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics.Science, 2021, 374, 172.ESI highly cited paperhttps://doi.org/10.1126/science.abg3954
11S. Sun, K. Wang, Z. Hong, M. Zhi, K. Zhang*, J. Xu*. Electrolyte Design for Low-Temperature Li-Metal Batteries: Challenges and Prospects.Nano-Micro Letters, 2024, 16, 35.https://doi.org/10.1007/s40820-023-01245-9
12J. Gong, H. Zhang, X. Liang, P. Li, Y. Liu, X. Li, C. Zhi, Z. Zhu*, X. C. Zeng*, N. Li*, J. Xu*. Cation Engineering Perovskite Cathodes for Fast and Stable Anion Redox Chemistry in Zinc-Iodine Batteries Advanced Functional Materials, 2024, 34, 2411137https://doi.org/10.1002/adfm.202411137
13X. Li, Y. Shen, X. Wang, S. Ni, L. Yue, S. A. Khan, J. Zhao, J. Xu*. Emerging halides as a new class of high-performance cathodes.Energy Storage Materials, 2024, 71, 103660.https://doi.org/10.1016/j.ensm.2024.103660
14R. Lin, Y. Jin*, Y. Li, M. Fu, Y. Gong, L. Lei, Y. Zhang, J. Xu*, Y Xiong*. Decoupling Interfacial Stability and Ion Transport in Solid Polymer Electrolyte by Tailored Ligand Chemistry for Lithium Metal BatteryAdvanced Functional Materials, 2024, 2421880https://doi.org/10.1002/adfm.202421880
15L. Yue, M.Yu, X. Li, Y. Shen, Y.Wu, C. Fa, N. Li, J. Xu*. Wide Temperature Electrolytes for Lithium Batteries: Solvation Chemistry and Interfacial Reactions.Small Methods, 2024, 8, 2400183.https://doi.org/10.1002/smtd.202400183
16B. Cui, J. Xu*. Enabling Rational Electrolyte Design for Lithium Batteries through Precise Descriptors: Progress and Future PerspectivesJournal of Materials Chemistry A, 2025, 13, 8223-8245https://doi.org/10.1039/D4TA07449A
17J. Zheng*, H. Wang, C. Hu, H. Chen, W. Zhang, X. Chu, L. Nie, R. Chen, J. Long, M. Lei, J. Xu*, Z. Lin, Q. Lai*. Electrolyte matching design for carboxylic Acid-Based organic K-Storage anode.Chemical Engineering Journal, 2024, 495, 153833.https://doi.org/10.1016/j.cej.2024.153833
18L. Zhou*, Z. Zhang, S. Lv, M. Zhang, P. Jiao, W. Zhang, J. Xu*, K. Zhang*. SnO2 coating to stabilize Mn-based layered oxide cathode materials for sodium-ion batteries.Materials Today Energy, 2023, 38, 101450.https://doi.org/10.1016/j.mtener.2023.101450
19J. Xu*. High-entropy electrolytes in boosting battery performance.Materials Futures, 2023, 2, 047501.https://doi.org/10.1088/2752-5724/ace8ab
20J. Xu, C. Wang*. Perspective—Electrolyte Design for Aqueous Batteries: From Ultra-High Concentration to Low Concentration? Journal of The Electrochemical Society, 2022, 169, 030530. Invitedhttps://doi.org/10.1149/1945-7111/ac5ba9
21W. Dong, R. Li, J. Xu (equal contribution), Y. Tang, F. Huang*. Long-life and high volumetric capacity Bi2Sn2O7 anode with interpenetrating Bi–O and Sn–O networks.Cell Reports Physical Science, 2022, 3, 101109.https://doi.org/10.1016/j.xcrp.2022.101109
22J. Xu, D. Wang, S. Kong, R. Li, Z. Hong*, F. Huang*. Pyrochlore phase Ce2Sn2O7 via an atom-confining strategy for reversible lithium storage.Journal of Materials Chemistry A, 2020, 8, 5744.https://doi.org/10.1039/C9TA13602A
23J. Xu, J. Huang, S. Zhang, Z. Hong, F. Huang*. Understanding the surface reduction of nano rutile and anatase: Selective breaking of Ti-O bonds.Materials Research Bulletin, 2020, 121, 110617.https://doi.org/10.1016/j.materresbull.2019.110617
24K. Liu, J. Xu (equal contribution), Y. Wang, M. Qian, W. Zhao, Y. Zeng, F. Huang*. Boron and Nitrogen Co‐Doped Trimodal‐Porous Wood‐Derived Carbon for Boosting Capacitive Performance.Energy Technology, 2020, 8, 1900950.https://doi.org/10.1002/ente.201900950
25J. Xu, J. He, W. Ding, Z. Hong, F. Huang*. Boosting the Stable Na Storage Performance in 1D Oxysulfide.Advanced Energy Materials, 2019, 9, 1900170.https://doi.org/10.1002/aenm.201900170
26J. Xu, Z. Li, P. Sun, K. Liu, Z. Liu, Z. Hong*, F. Huang*. Effective incorporation of nitrogen and boron in worm-like carbon foam for confining polysulfides.Carbon, 2019, 155, 379.https://doi.org/10.1016/j.carbon.2019.08.088
27J. Xu, D. Wang, H. Yao, K. Bu, J. Pan, J. He, F. Xu, Z. Hong, X. Chen, F. Huang*. Nano titanium monoxide crystals and unusual superconductivity at 11 K.Advanced Materials, 2018, 30, 1706240.https://doi.org/10.1002/adma.201706240
28J. Xu, F. Xu, M. Qian, Z. Li, P. Sun, Z. Hong, F. Huang*. Copper nanodot-embedded graphene urchins of nearly full-spectrum solar absorption and extraordinary solar desalination.Nano Energy, 2018, 53, 425.https://doi.org/10.1016/j.nanoen.2018.08.067
29J. Xu, W. Ding, G. Yin, Z. Tian, S. Zhang, Z. Hong*, F. Huang*. Capacitive lithium storage of lithiated mesoporous titania. Materials today energy, 2018, 9, 240.https://doi.org/10.1016/j.mtener.2018.05.016
30 X. Yao, J. Xu (equal contribution), Z. Hong, G. Li, X. Wang, F. Lu, W. Wang, H. Liu, C. Liang, Z. Lin*. W. Wang*, Metal/graphene composites with strong metal–S bondings for sulfur immobilization in Li–S batteriesThe Journal of Physical Chemistry C, 2018, 122, 3263.https://doi.org/10.1021/acs.jpcc.7b12063
31J. Xu, F. Xu, M. Qian, F. Xu, Z. Hong, F. Huang*. Conductive carbon nitride for excellent energy storageAdvanced Materials, 2017, 29, 1701674.https://doi.org/10.1002/adma.201701674
32W. Dong, J. Xu (equal contribution), C. Wang, Y. Lu, X. Liu, X. Wang, X. Yuan, Z. Wang, T. Lin, M. Sui, F. Huang*. A robust and conductive black tin oxide nanostructure makes efficient lithium‐ion batteries possibleAdvanced Materials, 2017, 29, 1700136. https://doi.org/10.1002/adma.201700136
33J. Xu, W. Ding, W. Zhao, W. Zhao, Z. Hong*, F. Huang*. In situ growth enabling ideal graphene encapsulation upon mesocrystalline MTiO3 (M= Ni, Co, Fe) nanorods for stable lithium storageACS Energy Letters, 2017, 2, 659.https://doi.org/10.1021/acsenergylett.7b00018
34J. Xu, Z. Tian, G. Yin, T. Lin, F. Huang*. Controllable reduced black titania with enhanced photoelectrochemical water splitting performanceDalton Transactions, 2017, 46, 1047.https://doi.org/10.1039/C6DT04060H
35J. Xu, W. Dong, C. Song, Y. Tang, W. Zhao, Z. Hong*, F. Huang*. Black rutile (Sn, Ti)O2 initializing electrochemically reversible Sn nanodots embedded in amorphous lithiated titania matrix for efficient lithium storageJournal of Materials Chemistry A, 2016, 4,15698.https://doi.org/10.1039/C6TA05645H
36G. Zhu, J. Xu (equal contribution), W. Zhao, F. Huang*. Constructing black titania with unique nanocage structure for solar desalination.ACS applied materials & interfaces, 2016, 8, 31716.https://doi.org/10.1021/acsami.6b11466
37J. Xu, G. Zhu, T. Lin, Z. Hong*, J. Wang*, F. Huang*. Molten salt assisted synthesis of black titania hexagonal nanosheets with tuneable phase composition and morphology. RSC advances, 2015, 5, 85928.https://doi.org/10.1039/C5RA17558E
38S. A. Khan, X. Li, S Ni, I. Hussain, R. Liu, A. K. Thakur, J. Xu, Y. Shen, A. K. An, J. Zhao*. Experimental investigation of gallium-based composite PCM for battery thermal management applicationsRenewable and Sustainable Energy Reviews, 2025, 213, 115466https://authors.elsevier.com/c/1kdKp_V0xP1loh
39A. L. Phan, B. Nan, P. ML. Le, Q. Miao, Z. Wu, K. Le, F. Chen, M. Engelhard, T. D. Nguyen, K. S. Han, J. Heo, W. Zhang, M. Baek, J. Xu, X. Zhang, P. Liu, L. Ma*, C. Wang*. Lightweight electrolyte design for Li/sulfurized polyacrylonitrile (SPAN) batteriesAdvanced Materials, 2024, 36, 2406594.https://doi.org/10.1002/adma.202406594
40Y. Zhang, S. Li, J. Shi, J. Lai, Z. Zhuang, J. Liu, W. Yang, L. Ma, Y.-P. Cai, J. Xu, Q. Zheng*. Revealing the key role of non-solvating diluents for fast-charging and low temperature Li-ion batteries.Journal of Energy Chemistry, 2024, 94, 171-180.https://doi.org/10.1016/j.jechem.2024.02.059
41Y. Wang, S. Zhou, N. Li, J.Han, S. Zhang, Z. Zhuang, Z.Sun, X. Wang, X. Wu, Z. Chen, J. Pan, Y. Shen, J. Xu, Y. Zhu, D.-L. Peng, Z. Guo, Q. Zhang*. Long-Durable Potassium Ion Batteries Enabled by Medium-Entropy Lattice Engineering on Prussian Blue Analogues Cathodes.Advanced Energy Materials, 2024, 2405007.https://doi.org/10.1002/aenm.202405007
42S. Zhou, Z. Sun, Z. Zhuang, S. Wen, H. Chen, Q. Yin, J. Pan, X. Chen, J. Xu, Q. Zhang*. Facile and Scalable Synthesis of Bismuth Oxyhalide Nanosheets Anode for Fast and Durable Sodium-ion StorageSCIENCE CHINA Materials, 2024, onlinehttps://doi.org/10.1007/s40843-024-3175-3
43Y. Zhou, Y. Ding, Y. Chen, Y. Shen, Z. Wang, X. Li, J. Xu, X. Huang*. Thermal degradation of lithium-ion battery cathodes: A machine learning prediction of stability and safety. Energy Materials, 2024, online.https://doi.org/10.20517/energymater.2024.200
44C. Yang, J. Xia, C. Cui, T. P. Pollard, J. Vatamanu, A. Faraone, J. A. Dura, M. Tyagi, A. Kattan, E. Thimsen, J. Xu, W. Song, E. Hu, X. Ji, S. Hou, X. Zhang, M. S. Ding, S. Hwang, D. Su, Y. Ren, X-Q. Yang, H. Wang, O. Borodin*, C. Wang*. All-temperature zinc batteries with high-entropy aqueous electrolyte. Nature Sustainability, 2023, 6, 325.ESI highly cited paperhttps://doi.org/10.1038/s41893-022-01028-x
45H. Wan, B. Zhang, S. Liu, Z. Wang, J. Xu, C. Wang*. Interface Design for High‐Performance All‐Solid‐State Lithium Batteries. Advanced Energy Materials, 2023, 14, 2303046.https://doi.org/10.1002/aenm.202303046
46C. Hu, J. Xu, X. Huang*. Recent Advances of Ruthenium-Based Electrocatalysts for Hydrogen Energy. Trends in Chemistry, 2023, 5, 225-239.https://doi.org/10.1016/j.trechm.2023.01.002
47S. Liu, X. Ji, N. Piao, J. Chen, N. Eidson, J. Xu, P. Wang, L. Chen, J. Zhang, T. Deng, C. Wang*. An Inorganic‐Rich Solid Electrolyte Interphase for Advanced Lithium‐Metal Batteries in Carbonate Electrolytes.Angewandte Chemie International Edition, 2021, 60, 3661.ESI highly cited paperhttps://doi.org/10.1002/anie.202012005
48L. Cao, D. Li, E. Hu, J. Xu, T. Deng, L. Ma, Y. Wang, X.-Q. Yang, C. Wang*. Solvation structure design for aqueous Zn metal batteries. Journal of the American Chemical Society, 2020, 142, 21404.ESI highly cited paperhttps://doi.org/10.1021/jacs.0c09794
49Q. Li, C. Yang, J. Zhang, X. Ji, J. Xu, X. He, L. Chen, S. Hou, J. Uddin, D. Addison, C. Wang*. Controlling Intermolecular Interaction and Interphase Chemistry Enabled Sustainable Water‐tolerance LiMn2O4|| Li4Ti5O12 Batteries.Angewandte Chemie International Edition, 2022, 61, e202214126.https://doi.org/10.1002/anie.202214126
50B. Nan, L. Chen, N. D. Rodrigo, O. Borodin, N. Piao, J. Xia, T. Pollard, S. Hou, J. Zhang, X. Ji, J. Xu, C. Wang*. Enhancing Li+ Transport in NMC811|| Graphite Lithium‐Ion Batteries at Low temperatures by Using Low-Polarity-Solvent Electrolytes.Angewandte Chemie International Edition, 2022, 61, e202205967.ESI highly cited paperhttps://doi.org/10.1002/anie.202205967
51H. Qi, J. Xu, P. Sun, X. Qi, Y. Xiao, W. Zhao, R. Joshi, F. Huang*. Tailoring Conductive Three‐Dimensional Porous Hard Carbon for Supercapacitors. Energy Technology, 2022, 10, 2101103.https://doi.org/10.1002/ente.202101103
52L. Fan, S. Zhang, W. Dong, J. Xu, X. Che, R. Li, H. Bi, F. Huang*. Two-dimensional TiNCl for capacitive-like lithium-ion storage.Science China Materials, 2022, 65, 2942.https://doi.org/10.1007/s40843-022-2072-8
53H. Wan, S. Liu, T. Deng, J. Xu, J. Zhang, X. He, X. Ji, X. Yao, C. Wang*. Bifunctional Interphase-Enabled Li10GeP2S12 Electrolytes for Lithium–Sulfur Battery.ACS Energy Letters, 2021, 6, 862.https://doi.org/10.1021/acsenergylett.0c02617
54X. He, X. Ji, B. Zhang, N. D. Rodrigo, S. Hou, K. Gaskell, T. Deng, H. Wan, S. Liu, J. Xu, C. Wang*. Tuning Interface Lithiophobicity for Lithium Metal Solid-State Batteries.ACS Energy Letters, 2021, 7, 131.https://doi.org/10.1021/acsenergylett.1c02122
55R. Li, J. Xu, Z. Lv, W. Dong, F. Huang*. Achieving highly stable Sn-based anode by a stiff encapsulation heterostructure.Science China Materials, 2021, 65, 695.https://doi.org/10.1007/s40843-021-1783-0
56T. Deng, L. Cao, X. He, A.-M. Li, D. Li, J. Xu, S. Liu, P. Bai, T. Jin, L. Ma, C. Wang*. In situ formation of polymer-inorganic solid-electrolyte interphase for stable polymeric solid-state lithium-metal batteries.Chem, 2021, 7, 3052.https://doi.org/10.1016/j.chempr.2021.06.019
57C. Yang, X. Wang, W. Dong, I.-W. Chen, Z. Wang, J. Xu, T. Lin, H. Gu, F. Huang*. Nitrogen-doped black titania for high performance supercapacitors.Science China Materials, 2020, 63, 1227.https://doi.org/10.1007/s40843-020-1303-4
58P.-F. Wang, T. Jin, J. Zhang, Q.-C. Wang, X. Ji, C. Cui, N. Piao, S. Liu, J. Xu, X.-Q. Yang, C. Wang*. Elucidation of the Jahn-Teller effect in a pair of sodium isomer.Nano Energy, 2020, 77, 105167.https://doi.org/10.1016/j.nanoen.2020.105167
59P. Sun, J. Huang, F. Xu, J. Xu, T. Lin, W. Zhao, W. Dong, F. Huang*. Boron-induced nitrogen fixation in 3D carbon materials for supercapacitors.ACS Applied Materials & Interfaces, 2020, 12, 28075.https://doi.org/10.1021/acsami.0c02535
60M. Qian, Z. Li, L. Fan, H. Wang, J. Xu, W. Zhao, F. Huang*. Ultra-Light graphene tile-based phase-change material for efficient thermal and solar energy harvest.ACS Applied Energy Materials, 2020, 3, 5517.https://doi.org/10.1021/acsaem.0c00490
61X. Qi, T. Lin, S. Zhang, J. Xu, H. Zhang, F. Xu, F. Huang*. Nitrogen doped hierarchical porous hard carbon derived from a facial Ti-peroxy-initiating in-situ polymerization and its application in electrochemical capacitors.Microporous and Mesoporous Materials, 2020, 294, 109884.https://doi.org/10.1016/j.micromeso.2019.109884
62Z. Li, J. Xu, D. Sun, T. Lin, F. Huang*. Nanoporous carbon foam for water and air purification.ACS Applied Nano Materials, 2020, 3, 1564.https://doi.org/10.1021/acsanm.9b02347
63Z. Li, W. Ma, J. Xu, M. Qian, H. Bi, W. Zhao, Z. Lv, F. Huang*. Oxygen-enriched tubular carbon for efficient solar steam generation.Carbon, 2020, 170, 256.https://doi.org/10.1016/j.carbon.2020.08.039
64S. Kong, J. Xu, G. Lin, S. Zhang, W. Dong, J. Wang, F. Huang*. A rationally designed 3D interconnected porous tin dioxide cube with reserved space for volume expansion as an advanced anode of lithium-ion batteries.Chemical Communications, 2020, 56, 10289.https://doi.org/10.1039/D0CC03948A
65J. Huang, X. Che, J. Xu, W. Zhao, F. Xu, F. Huang*. A reverse slipping strategy for bulk-reduced TiO2−x preparation from Magnéli phase Ti4O7.Inorganic Chemistry Frontiers, 2020, 7, 212.https://doi.org/10.1039/C9QI01042D
66A. Riaz, C. Zhou, J. Xu, Z. Hong*. Photocatalytic Performance of MWCNTs/TiO2 Nanocomposites: Conventional vs. Microwave-Assisted Synthesis.Integrated Ferroelectrics, 2020, 211, 175.https://doi.org/10.1080/10584587.2017.1336916
67X. Wang, J. Xu, M. Zhi, Z. Hong, F. Huang*. Synthesis of Co2P nanoparticles decorated nitrogen, phosphorus Co-doped Carbon-CeO2 composites for highly efficient oxygen reduction.Journal of Alloys and Compounds, 2019, 801, 192.https://doi.org/10.1016/j.jallcom.2019.06.087
68X. Wang, J. Xu, Z. Wu, M. Zhi, Z. Hong, F. Huang*. Complexing‐Coprecipitation Method to Synthesize Catalysts of Cobalt, Nitrogen‐Doped Carbon, and CeO2 Nanosheets for Highly Efficient Oxygen Reduction.Chemnanomat, 2019, 5, 831.https://doi.org/10.1002/cnma.201900139
69M. Qian, Z. Wang, Z. Li, J. Xu, P. Sun, J. Lin, T. Lin, F. Huang*. Sol-gel assisted chemical activation for nitrogen doped porous carbon.Microporous and Mesoporous Materials, 2019, 286, 18.https://doi.org/10.1016/j.micromeso.2019.05.038
70J. Lin, J. Xu, W. Zhao, W. Dong, R. Li, Z. Zhang, F. Huang*. In Situ Synthesis of MoC1–x Nanodot@ Carbon Hybrids for Capacitive Lithium-Ion Storage.ACS applied materials & interfaces, 2019, 11, 19977.https://doi.org/10.1021/acsami.9b03230
71J. Huang, J. Xu, X. Che, C. Huang, J. Huang*. Dismutation of Titanium Sub‐oxide into TiO and TiO2 with Structural Hierarchy Assisted by Ammonium Halides.Chemistry–A European Journal, 2019, 25, 10642.https://doi.org/10.1002/chem.201901057
72C. Huang, X. Wang, D. Wang, W. Zhao, K. Bu, J. Xu, X. Huang, Q. Bi, J. Huang, F. Huang*. Atomic Pillar Effect in PdxNbS2 To Boost Basal Plane Activity for Stable Hydrogen Evolution.Chemistry of Materials, 2019, 31, 4726.https://doi.org/10.1021/acs.chemmater.9b00821
73G. Yin, X. Huang, T. Chen, W. Zhao, Q. Bi, J. Xu, Y. Han, F. Huang*. Hydrogenated blue titania for efficient solar to chemical conversions: preparation, characterization, and reaction mechanism of CO2 reduction.ACS Catalysis, 2018, 8, 1009.https://doi.org/10.1021/acscatal.7b03473
74Q. Wang, J. Xu, R. Li, Z. Lin, B. Liu, Z. Li*. A strategy to deposit nano metals in multi-layer graphene for scalable synthesis of high performance anode materials in lithium ion battery. Journal of Alloys and Compounds, 2018, 731, 739.https://doi.org/10.1016/j.jallcom.2017.09.206
75P. Wang, J. Xu, F. Xu, W. Zhao, P. Sun, Z. Zhang, M. Qian, F. Huang*. Constructing hierarchical porous carbon via tin punching for efficient electrochemical energy storage.Carbon, 2018, 134, 391.https://doi.org/10.1016/j.carbon.2018.04.012
76H. Liu, Y. Tang, W. Zhao, W. Ding, J. Xu, C. Liang, Z. Zhang, T. Lin, F. Huang*. Facile Synthesis of Nitrogen and Halogen Dual‐Doped Porous Graphene as an Advanced Performance Anode for Lithium‐Ion Batteries.Advanced Materials Interfaces, 2018, 5, 1701261. https://doi.org/10.1002/admi.201701261
77J. Lin, W. Zhao, M. Qian, K. Liu, J. Xu, F. Huang*. Self-templated synthesis of heavily nitrogen-doped hollow carbon spheres.Chemical Communications, 2018, 54, 4565.https://doi.org/10.1039/C8CC00415C
78Y. X. Hao, M. Qian, J. Xu, H. Bi, F. Huang*. Porous Cotton-derived Carbon: Synthesis, Microstructure and Supercapacitive Performance.Journal of Inorganic Materials, 2018, 33, 93-99.https://doi.org/10.15541/jim20170164
79G. Yin, Q. Bi, W. Zhao, J. Xu, T. Lin, F. Huang*. Efficient conversion of CO2 to methane photocatalyzed by conductive black titania.ChemCatChem, 2017, 9, 4389.https://doi.org/10.1002/cctc.201701130
80Z. Tian, H. Cui, J. Xu, G. Zhu, F. Shao, J. He, F. Huang*. Efficient Charge Separation of In‐Situ Nb‐Doped TiO2 Nanowires for Photoelectrochemical Water–splitting. ChemistrySelect, 2017, 2, 2822.https://doi.org/10.1002/slct.201700319
81Y. Hao, F. Xu, M. Qian, J. Xu, W. Zhao, F. Huang*. Low-cost and massive preparation of nitrogen-doped porous carbon for supercapacitor application. RSC Advances, 2017, 7, 10901.https://doi.org/10.1039/C6RA28354C
82C. Guo, H. Li, W. Zhao, J. Pan, T. Lin, J. Xu, M. Chen, F. Huang*. High-quality single-layer nanosheets of MS2 (M= Mo, Nb, Ta, Ti) directly exfoliated from AMS2 (A= Li, Na, K) crystals.Journal of Materials Chemistry C, 2017, 5, 5977.https://doi.org/10.1039/C7TC00838D
83K. Bu, J. He, X. Lai, C. Song, D. Wang, J. Xu, S. Wang, F. Huang*. Effects of Iron Doping on the Physical Properties of Quaternary Ferromagnetic Sulfide: Ba2Fe0. 6V1. 4S6.Inorganic chemistry, 2017, 56, 8302.https://doi.org/10.1021/acs.inorgchem.7b00960
84G. Zhu, Y. Shan, T. Lin, W. Zhao, J. Xu, Z. Tian, H. Zhang, C. Zheng, F. Huang*. Hydrogenated blue titania with high solar absorption and greatly improved photocatalysis.Nanoscale, 2016, 8, 4705.https://doi.org/10.1039/C5NR07953E
85Z. Tian, H. Cui, G. Zhu, W. Zhao, J. Xu, F. Shao, J. He, F. Huang*. Hydrogen plasma reduced black TiO2B nanowires for enhanced photoelectrochemical water-splitting.Journal of Power Sources, 2016, 325: 697-705.https://doi.org/10.1016/j.jpowsour.2016.06.074
86G. Zhu, H. Yin, C. Yang, H. Cui, Z. Wang, J. Xu, T. Lin, F. Huang*. Black titania for superior photocatalytic hydrogen production and photoelectrochemical water splitting.ChemCatChem, 2015, 7, 2614. https://doi.org/10.1002/cctc.201500488